Subtype composition and responses of respiratory neurons in the pre-botzinger region to pulmonary afferent inputs in dogs.
نویسندگان
چکیده
The brain stem pre-Botzinger complex (pre-BC) plays an important role in respiratory rhythm generation. However, it is not clear what function each subpopulation of neurons in the pre-BC serves. The purpose of the present studies was to identify neuronal subpopulations of the canine pre-BC and to characterize the neuronal responses of subpopulations to experimentally imposed changes in inspiratory (I) and expiratory (E) phase durations. Lung inflations and electrical stimulation of the cervical vagus nerve were used to produce changes in respiratory phase timing via the Hering-Breuer reflex. Multibarrel micropipettes were used to record neuronal activity and for pressure microejection in decerebrate, paralyzed, ventilated dogs. The pre-BC region was functionally identified by eliciting tachypneic phrenic neural responses to localized microejections of DL-homocysteic acid. Antidromic stimulation and spike-triggered averaging techniques were used to identify bulbospinal and cranial motoneurons, respectively. The results indicate that the canine pre-BC region consists of a heterogeneous mixture of propriobulbar I and E neuron subpopulations. The neuronal responses to ipsi-, contra-, and bilateral pulmonary afferent inputs indicated that I and E neurons with decrementing patterns were the only neurons with responses consistently related to phase duration. Late-I neurons were excited, but most other types of I neurons were inhibited or unresponsive. E neurons with augmenting or parabolic discharge patters were inhibited by ipsilateral inputs but excited by contra- and bilateral inputs. Late-E neurons were more frequently encountered and were inhibited by ipsi- and bilateral inputs, but excited by contralateral inputs. The results suggest that only a limited number of neuron subpopulations may be involved in rhythmogenesis, whereas many neuron types may be involved in motor pattern generation.
منابع مشابه
Orexin stimulates breathing via medullary and spinal pathways.
A central neuronal network that regulates respiration may include hypothalamic neurons that produce orexin, a peptide that influences sleep and arousal. In these experiments, we investigated 1) projections of orexin-containing neurons to the pre-Botzinger region of the rostral ventrolateral medulla that regulates rhythmic breathing and to phrenic motoneurons that innervate the diaphragm; 2) the...
متن کاملPre-botzinger Cotnplex: a Brainste,tn Region That May Generate Respir~tory Rhythtn in Manunals T He Rhythm of Breathing Ani
The location of neurons generating the rhythm of breathing in mammals is unknown. By microsection of the neonatal rat brainstem in vitro, a limited region of the ventral medulla (the pre-Botzinger Complex) that contains neurons essential for rhythmogenesis was identified. Rhythm generation was eliminated by removal ofonly this region. Medullary slices containing the pre-Botzinger Complex genera...
متن کاملThe nucleus of the solitary tract and the coordination of respiratory and sympathetic activities
It is well known that breathing introduces rhythmical oscillations in the heart rate and arterial pressure levels. Sympathetic oscillations coupled to the respiratory activity have been suggested as an important homeostatic mechanism optimizing tissue perfusion and blood gas uptake/delivery. This respiratory-sympathetic coupling is strengthened in conditions of blood gas challenges (hypoxia and...
متن کاملTonic and reflex control of the cardio-respiratory system by neurons in the ventral medulla
To investigate the channels and neurotransmitters in the ventrolateral medulla (VLM) oblongata that are responsible for the maintenance of sympathetic tone and cardio-respiratory reflex regulation. Microinjections of excitant amino acid (glutamate, 100 nl, 100 mM), calcium channel blockers, agonists and antagonists were made throughout the VLM in anaesthetized rats. Arterial blood pressure, sym...
متن کاملKinetics and subunit composition of NMDA receptors in respiratory-related neurons.
NMDA receptors are involved in a variety of brainstem functions. The excitatory postsynaptic NMDA currents of pre-Botzinger complex interneurons and hypoglossal motoneurons, which are located in the medulla oblongata, show remarkably fast deactivation kinetics of approximately 30 ms compared with NMDA receptors in other types of neurons. Because structural heterogeneity might be the basis for p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 93 5 شماره
صفحات -
تاریخ انتشار 2005